NaN Equivalence Comparison Misused
Be careful when using the NaN equivalence comparison in NumPy and Pandas.
Be careful when using the NaN equivalence comparison in NumPy and Pandas.
Avoid using chain indexing in Pandas.
Explicitly specify on, how and validate parameter for df.merge() API in Pandas for better readability.
Remember to assign the result of an operation to a variable or set the in-place parameter in the API.
Use df.to_numpy() in Pandas instead of df.values() for transform a DataFrame to a NumPy array.
Check whether feature scaling is added before scaling-sensitive operations.
Hyperparameters should be set explicitly.
Add a mask for possible invalid values. For example, developers should add a mask for the input for tf.log() API.
Use tf.TensorArray() in TensorFlow 2 if the value of the array will change in the loop.
Call the training mode in the appropriate place in PyTorch code to avoid forgetting to toggle back the training mode after the inference step.
Use optimizer.zero_grad(), loss_fn.backward(), optimizer.step() together in order in PyTorch. Do not forget to use optimizer.zero_grad() before loss_fn.backward() to clear gradients.
Use Pipeline() API in Scikit-Learn or check data segregation carefully when using other libraries to prevent data leakage.